
ActionScript 3.0 for Designers
Wednesday, September 19
10:45 a.m. – 12:00 a.m.
Room 1

This is a skeletal outline, with select example code segments, to accompany the
presentation notes for ActionScript 3.0 for Designers. To check for more up-to-date
materials, visit: http://www.fmaonline.com/flashforward/

I hope to give you a fast-paced, information-packed look at Action Script 3.0 from a new
user's perspective. If you are already familiar with AS3, you will likely be bored to
slumber in this presentation. However, if you are just getting started—particularly
within the Flash CS3 environment, in which this presentation is grounded—you may
get more out of it.

Please feel free to shout out questions as we go, but please also be prepared for me to
defer them until the end of the presentation, if time is tight. I'll try to monitor our
progress and adjust our pace if needed. To get the most out of our meeting, try to sit
back and soak it in from a big picture perspective. I'll make these notes, and
accompanying source files, available at the url above, so you don't have to worry about
recording everything we discuss.

Finally, all of the material in this presentation is distilled from Learning ActionScript
3.0, published by O'Reilly, and co-written with Zevan Rosser. It should be available, in
one form or another, by the time of this session.

I. INTRODUCTION

 The Good
 You’re among friends.
 You can still code in the Timeline.
 AS3 is:
 More Consistent
 More Powerful
 A Lot Faster
 Closer to Other Languages
 Stricter (Better Error Reporting)

 The Bad
 AS3 is:
 Stricter (Initially Frustrating)
 More Verbose
 Some things have really changed or are just... gone
 A few examples:
 Initially a pain: ReleaseOutside/MouseUpOutside,
 No problem: eval(), _level,
 Adjustments needed, if you relied on: _global,
 A bit more work: Color class, Key object,
 You’re facing a bigger learning curve
 We only have 75 minutes...

 The Ugly
 AS1/AS2 and AS3 are Not Compatible
 Two separate virtual machines in Player
 Communication only through indirect means (e.g. LocalConnections)
 You May Need to Straddle the AS2/AS3 Fence
 To support legacy projects or ongoing existing development
 If you can’t afford to focus your learning on one version
 Flash Platform Diverging and Converging
 Initial disparity between Flash and Flex still a problem, but improving
 Example Issues:
 Different component sets
 Different authoring techniques (embedding and more)
 Improvements:
 Flex Component Kit for Flash CS3
 Disparity to a lesser degree with AIR development, also improving
 Can now author AIR apps in Flash CS3
 We only have 75 minutes!!

II. CODE PLACEMENT
 NOTE: Some content herein will be explained in a little later on, as time allows.
 Timeline
 No More Stage Coding
 Cannot apply scripts directly to MC or Button -- on(), onClipEvent()
 (This is a good thing, so nut up.)
 Frame Scripts
 Business as usual (perhaps a few more imports?)
 Stage Instances Auto-Declared
 Handy for simple timeline scripts
 Can get in the way when declaring/typing instance variables
 Can be disabled in Publish Settings:

 Can now adjust frame rate at runtime
 this.stage.frameRate = 30;
 Example (movie clip instantiated as mc on stage):
 mc.scaleX = 2;
 //note revised property name and 0-1 percentage scale

 Symbol Instances
 Simplified Linkage Process
 Everything accomplished through Class and Base class
 In conjunction with the Display List, this is great.

 Ball class (in external class file called Ball.as in same directory):
 package {

 import flash.display.Sprite;

 public class Ball extends Sprite {

 public function Ball() {
 this.scaleX = 2;
 //note use of this instead of instance name
 }
 }
 }

 Document Class
 Easier Entrée into OOP
 Timeline Class

 Example (in external class file called Main.as in same directory):
 package {

 import flash.display.MovieClip;

 public class Main extends MovieClip {

 public function Main() {
 trace("FlashForward Boston 2007");
 }
 }
 }

 Instantiation (and Static, etc.)
 //in timeline, document class, or other class
 var particle:Particle = new Particle();

 //in external class
 package {

 import flash.display.Sprite;

 public class Particle extends Sprite {

 public function Particle() {
 //particle physics here
 }
 }
 }

III. DATA TYPING
 Tell Flash compiler and Player what type of data will be in use at a given moment.
 Mandatory
 Better Error Reporting
 Compile-Time
 Runtime
 Example:
 var userName:String = "Rich";
 trace(userName*3);
 //error: 1067: Implicit coercion of a value of type String
 to an unrelated type Number.

IV. DISPLAY LIST
 Easily create display objects. Everything is now accomplished with new()
 var mc:MovieClip = new MovieClip();
 Easily add and remove display objects, including depth management
 addChild(mc) //automatically add to top of visual stack
 removeChildAt(0) //remove from specific depth (e.g. lowest)
 Easily re-parent children CODE
 mc1.removeChild(mc3)
 mc2.addChild(mc3)
 Take advantage of new display object types

 A couple of examples:
 Dynamically create shapes
 A sprite is a one-frame movie clip
 Object vs. Container
 Display object containers can have children
 All display object containers are display objects, but not vice versa
 Cast display objects when necessary
 MovieClip(obj).gotoAndStop(1);

V. Events
 Listeners
 No more onEventHandlers.
 All events are now handled by the EventDispatcher, using event listeners
 Their use is the same as in AS2, but they are not confined to custom objects
 (for use with components, EventDispatcher, etc.)
 Flow
 Events cascade through the display list, divided into two phases:
 Capture and Target—which consists of event propagation from the
 senior-most object (the stage, for example) down to the target
 (such as a button clicked by the user).
 Bubbling—when the event bubbles back to the top of the display list.
 You can listen for events during either or both of these phases, and even
 cancel events during propagation.
 Don't worry too much about the complexities of the multiple event phases
 until you get more comfortable with AS3. However, you can take full
 advantage of event propagation. Instead of assigning a listener to many
 buttons, you might assign a listener to a parent and allow it to work its
 way down to the buttons. You can then parse data from the event to
 determine its point of origin—the target of the original event.
 Example:
 The following will bring any movie clip in the same scope as the listener
 to the top of the visible stack.
 this.addEventListener(MouseEvent.MOUSE_OVER, onBringToTop, false, 0, true);
 function onBringToTop(evt:MouseEvent):void {
 var mc:MovieClip = evt.target;
 setChildIndex(mc, numChildren - 1);
 }
 Constants
 Events now reside in their own classes, and are expressed as constants.
 For example, mouse events are found in the MouseEvent class, and they
 include MouseEvent.MOUSE_UP, MouseEvent.CLICK, and so on.

VI. Loading
 URLRequest
 All URLs are now handled the same way
 Data from URLs can now be accessed immediately, during streaming,
 including text, raw binary data, or URL-encoded variables
 Data is then passed to loader objects, such as URLLoader, for loading
 external assets, and various other load commands. For example,
 the Sound class loads sound files with the .load() method, to which
 the URLRequest data is passed.
 Example:
 var snd:Sound = new Sound();
 var snd_url:URLRequest = new URLRequest("song.mp3");
 snd.load(snd_url);

VII. So und
 Now with greater granularity and control
 With greater granularity comes greater verbosity
 Briefly, sound works in this way:
 Sounds are loaded and played via the Sound class
 Optionally, loading can be buffered via the SoundLoaderContext class
 Each sound is played in its own channel via the SoundChannel class
 All sounds go through a single global mixer via the SoundMixer class
 Raw sound data, in the form of frequency spectrum analysis and amplitude,
 can be accessed in real time using the computeSpectrum() method.
 Said raw data is stored in a highly efficient array called the ByteArray,
 storing 256 amplitudes for each of the left and right channels, every
 time the data is sampled. For example, 20 frames per second means
 20 * 512, or 10,240, samples per second.
 Reading from the array is very easy, however, as a single method both
 reads the sequential data and advances the array index. Therefore, it's
 very easy to use an amplitude value to control anything you can manipulate
 with numerical data (such as x- and/or y- coordinates, scale, rotation, alpha,
 color, frame number, etc.

Project in Timeline

import flash.display.Sprite;
import flash.net.URLRequest;
import flash.media.*;
import flash.events.*;
import flash.utils.ByteArray;

var snd:Sound = new Sound();
var vis:Sprite;

function initSound() {
 snd.addEventListener(IOErrorEvent.IO_ERROR, onIOError, false, 0, true);
 snd.addEventListener(Event.COMPLETE, onLoadComplete, false, 0, true);

 snd.load(new URLRequest("song.mp3"));
}

function onLoadComplete(evt:Event):void {
 removeEventListener(IOErrorEvent.IO_ERROR, onIOError);

 vis = new Sprite();
 vis.x = vis.y = 20;
 addChild(vis);
 vis.stage.frameRate = 30;
 initVisualization();

 var channel:SoundChannel = new SoundChannel();
 channel = snd.play();
}

function onIOError(evt:IOErrorEvent):void {
 trace("An error occurred when loading the sound:", evt.text);
}

function initVisualization() {
 var ball:Sprite;
 for (var i:int=0; i<256; i++) {
 ball = new BallRed();
 ball.x = i*2;
 vis.addChild(ball);
 }
 for (i=0; i<256; i++) {
 ball = new BallYellow();
 ball.x = i*2;
 vis.addChild(ball);
 }

 addEventListener(Event.ENTER_FRAME, onVisualize, false, 0, true);
}

function onVisualize(evt:Event):void {
 var bytes:ByteArray = new ByteArray();
 SoundMixer.computeSpectrum(bytes, false, 0);

 for (var i:Number = 0; i < 256; i++) {
 vis.getChildAt(i).y = 100 - (bytes.readFloat() * 200);
 }
 for (i = 256; i < 512; i++) {
 vis.getChildAt(i).y = 200 - (bytes.readFloat() * 200);
 }
}

initSound();

VIII. Object-Oriented Programming (OOP) (10: 75)
 This 5-minute demo can't even qualify as a crash course.
 This is meant only as a demo of the logical extension in project
 development promoted by ActionScript 3.0.
 For a good crash course, sit in on OOP for the Noob – What's in the Box?
 by the accomplished Peter Elst, immediately following lunch,
 in this same room.

 Object-oriented programming improves development by breaking
 down a project into objects. Briefly, you can look at the evolution
 of programming in this way:
 Sequential programming—a linear sequence of commands, as can
 sometimes be seen in basic individual scripts
 Procedural programming—adds the use of procedures, also known
 as subroutines or functions, to partially compartmentalize
 code blocks for more efficient use
 Object-oriented programming—encapsulates code into logical classes
 that are as reusable and multi-purposeable as possible, from which
 objects can be created. Classes can inherit from other classes to
 minimize redundancies and streamline development. As such, a
 Vehicle class can give rise to Car and Truck classes that share many
 attributes, but also contain elements private to each respective class.
 OOP is not mandatory in AS3, but it can really help in the cases of large projects,
 when multiple programmers are involved, or when a project is well-suited
 to an object-oriented approach (such as certain kinds of games, for example).

 Don't feel pressured into adopting OOP practices before you're ready, or make
 the mistake of inseparably linking OOP with AS3. AS3 is versatile enough
 to use for the kind of
 As a very brief demonstration of AS3 OOP—again, merely as a demo of a
 possible progression of development you may follow in your learning of
 the language—the previous timeline example is provided in OOP form.
 This demo takes advantage of the simplest possible OOP approaches
 made possible by Flash CS3 (outlined in a moment).

Project in OOP
Document Class Main, from Main.as

package {

 import flash.display.Sprite;
 import flash.net.URLRequest;
 import flash.media.*;
 import flash.events.*;
 import Visualization;

 public class Main extends Sprite {

 private var _snd:Sound = new Sound();

 public function Main() {
 _snd.addEventListener(IOErrorEvent.IO_ERROR, onIOError, false, 0, true);
 _snd.addEventListener(Event.COMPLETE, onLoadComplete, false, 0, true);

 _snd.load(new URLRequest("song.mp3"));
 }

 private function onLoadComplete(evt:Event):void {
 removeEventListener(IOErrorEvent.IO_ERROR, onIOError);

 var vis:Visualization = new Visualization();
 vis.x = vis.y = 20;
 addChild(vis);
 vis.stage.frameRate = 30;

 var channel:SoundChannel = new SoundChannel();
 channel = _snd.play();
 }

 private function onIOError(evt:IOErrorEvent):void {
 trace("An error occurred when loading the sound:", evt.text);
 }
 }
}

Class Visualize, from Visualization.as

package {

 import flash.display.Sprite;
 import flash.media.SoundMixer;
 import flash.utils.ByteArray;
 import flash.events.Event;

 public class Visualization extends Sprite {

 public function Visualization() {
 var ball:Sprite;
 for (var i:int=0; i<256; i++) {
 ball = new BallRed();
 ball.x = i*2;
 addChild(ball);
 }
 for (i=0; i<256; i++) {
 ball = new BallYellow();
 ball.x = i*2;
 addChild(ball);
 }

 addEventListener(Event.ENTER_FRAME, onVisualize, false, 0, true);
 }

 private function onVisualize(evt:Event):void {
 var bytes:ByteArray = new ByteArray();
 SoundMixer.computeSpectrum(bytes, false, 0);

 for (var i:Number = 0; i < 256; i++) {
 getChildAt(i).y = 100 - (bytes.readFloat() * 200);
 }
 for (i = 256; i < 512; i++) {
 getChildAt(i).y = 200 - (bytes.readFloat() * 200);
 }
 }
 }
}

IX. Conclusion

If you enjoyed listening to this presentation just half as much as I enjoyed giving it, well
then, I enjoyed it twice as much as... oh, I can't even finish that. I hope you got
something out of this. I realize that you have choices and that other damn-fine
presentations were running alongside mine. If you see me in the halls, please let me
know what you thought of it. If you like it, tell everyone. If you didn't, lie.
 —Rich Shupe, FMA

X. Additional Resources

Additional info re: this presentation: http://www.fmaonline.com/flashforward/
Flash CS3 Training I contributed to the great Lynda.com library: http://www.lynda.com/
Adobe's ActionScript 3.0 Language Reference
 http://livedocs.adobe.com/flash/9.0/ActionScriptLangRefV3/index.html
Peter Elst's OOP Primer: http://www.adobe.com/devnet/actionscript/articles/oop_as3.html

